[Proposed] df50tr, df005ts

Author

김보람

Published

February 13, 2024

imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run function_proposed_gcn.py
with open('fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    

df50_train, df[::10]: test

df_results = try_3(fraudTrain, 10, 0, 0, 10973.519989002007, 0.501)

ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'./results/{ymdhms}-proposed.csv',index=False)
df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.964562 0.115884 0.725 0.199828 0.864214 True Proposed 0 9009 amt 0.498945 3003 0 None 10973.519989 0.501

df50_tr, df50_tst

df50 = throw(fraudTrain,0.5)
try_1(df50, 0.5, 0.5, 10973.519989002007, 0.501)
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.886483 0.962151 0.804553 0.876323 0.92527 True Proposed 0.5 8409 amt 0.500059 3603 0.5 None 10973.519989 0.501